...so GdZ, um allen den Frust zu erparren, die dir helfen wollen. Den Begriff "Verhalten", kan man auf vieleirlei Weisen interpretieren. Als Physiker benutzt man Parameter, um den Zustand und seine zeitliche Veränderung (sprich das Verhalten) zu beschreiben, wobei die Veränderung auch die Interaktion mit andenen Teilchen darstellt. Manchmal genügt es den Anfang und Endzustand zu definieren und das nur anhand von wenigen Parametern, um ein Paar andere zu beschreiben.
Und jetzt um die Probleme deiner Anfrage konreter anzugehen: Um ein Zustand zu definieren, reichen alleine die räumliche Parameter nicht aus. Zu den Räumlichen gehöhren Ortskoordinaten zu einem festen Zeitpunkt und der Vektor des Teilchenimpulses. Die Probleme beginnen schon hier. Die Unschärferelation erlaubt es nicht eine 100% genaue Bestimmung des Orts und Impulses gleichzeitig. Die setzt sich bei der Beschreibung des Inneren energetischen Zustandes eines Teilchens fort. Weil aus der besagten Unschärfe-Relation hervorgeht, dass die Elektron-Orbitale (also auch die Ausdehnung des Atoms) verschmiert sind. So jezt gehen wir eine Stuffe höher: Atome sind in Molekülen gebunden (wenn es "kalt" ist) diese haben viele Freiheitsgrade, um die herum es Schwingungen und Rotationen gibt, die ebenfals einen diskreten dennoch aus der Unschärferelationsgründen einen leicht verschmierten Spektrum haben.
Fügt man dem System Energie zu, was ausschlieslich durch Photonenabsorbtion geschieht, so beginnt hier schon die Verwendung der Wahrscheinlichkeitesrechnung und des Wellen-Teilchen-Dualismus. Wie trifft man etwas, was mal hier mal da ist, aber es ist unbekannt genau wann, wie schnell und wohin fliegend? Und es sind unzähle Energieniveaus die durchgelaufen werden müssen, um das Molekul zu spallten und dann später den Atom von seiner Elektronenhülle zu befreien.
Und dann möchte man noch sich stark abstoßende Atomekerne zusammenprallen lassen...tja so bildlich ist es auch hier nicht. Die Atome müßen nur nahe genug einander kommen, um zu ragieren. Der sogenanter Tunneleffekt tritt zu Geltung. Je näher die einander kommen, desto wahrscheinlicher ist die Reaktion. Um das enigermassen zu beschreiben, muss man Wechselwirkungsquerschnitt deffinieren.
Den kannst du so verstehen: zwei Autos rasen kanpp an einander vorbei. Das Ausweichen dem Zusammenstosses, kannst du als eine Wechselwirkung ansehen. Je schneller fahren die Autos auf einander zu desto früher werden die Fahrer ausweichen. Der Abstand in dem Augeblick ist sowas wie der Wechselwirkungsquerschitt, der eben energieabhängig ist. Mit 5 kmh würde man mit 5 cm zwischen den Spiegeln ohne große Angst sich passieren können. Mit 50 sind es schon mindestens 50cm...etc. Dabei ist es wichtig, wie schnell jeder einzelner von dennen sich bewegt.
So, ich hoffe, ich konnte dir ein wenig Blick auf die Komplezität des Problems geben. Um das Verhalten (die Fusion) der Atomkerne zu beschreiben muss du das noch mal verdoppeln. Man weisst einfach nie wan und wo sich zwei Atome befinden und dem ensprechen auch treffen. Atome sind eben keine Gewer-Kugel die eine Form haben und mit gliecher Geschwindigkein in gleiche Richtung den Gewerlauf verlaussen.
Da die Wahrscheinlichkeiten im Spiel sind, d.h bei kalten Temperaturen und geringen Energien die Reaktionsrate gegen Null geht, kann man dennoch manche Parameter praktisch Abschätzen. Wenn ich weis, wie Wahrscheinlich eine Wechselwirkung zweier Atomkerne in einem Platzmaschlauch bei bestimmter Temperatur ist, so kann ich direkt die Energieausbeute ableiten. Der Grund, warum auf der Sonne die Fusion schon bei kälteren Temperaturen abläuft: wegen des immensen Druckes ist die Teilchendichte ausreichend genung um bei der relativ geringen Reaktionsrate doch ein dauerhaftes "Brennen" zu ermöglichen. Auf der Erde erzeugbare Drucke sind jedoch so gering, dass bei gleichen Temperaturen ablaufende Fusion, viel zu langsam ablaufen wird und der Energiebilanz einfach negativ ausfallen wird.
Man kann also viele Effekte praktisch benutzen ohne die Prozesse bis zum letzten Elektron beschreiben zu müßen. Um dir den praktischen Aufwand der Beschreibung (Vermessung ) einer Reaktion zu geben: schaue dir die Dimensionen des Atlas-detektors an. Wie du dir das bildlich vorstellen kannst, ohne dabei viel zu sehr die intuitive Bilder zu verwenden weis ich nicht. Um Quantenmechanik anwenden zu können, bedarf es eines abgeschloßenen Studiums der Physik mit schwerpunkt Hochenergie und Teilchenphysik. Und das war erst mein Versuch dir die Spitze des Eisbergs zu zeigen. Am besten du sezt dich mit den etablierten Methoden zu Beschreibung der Zustande und der Zustandsübergägne am Beispiel eines so einfachen Systems wie Wasserstoffatoms auseinander, damit deine Fragen etwas gezielter und für alle verständlicher gestellt werden können ohne das doch etwas arrogante "benutzt eure Phantasie halt" zu gebrauchen.
Ich habe dir hier viele Schlüßelbegriffe gegeben, ich hoffe es hilft dir weiter...auch im Bezug auf deine Verständigung in unserem Forum