Moin,
ich habe jetzt diesen Thread jetzt noch einmal in Ruhe gelesen und muss da zum Beitrag von Kreuzberga noch etwas sagen.
durch eine Wasserstoff-Wolke fliegen (womit in den nächsten paar Millionen Jahren nicht zu rechnen ist)Das möchte ich gern ändern:
Auf dem Bild ist unsere *lokale Flocke* zu sehen; in ihr ist unsere Sonne beheimatet. Die *lokale Flocke* liegt in der *lokalen Blase* oder auch *Loop III* genannt. Und diese *lokale Flocke* ist eine interstellare Wolke mit einem ø von knapp 30 Lj bei 0,26 Atome/cm³. Sie besteht aus neutralem und ionisiertem Gas sowie aus Staub. Unser Sonnensystem durchquert die *lokale Flocke* seit ~ 150.000 Jahren und wird sie voraussichtlich in 20.000 Jahren wieder verlassen.
Dann wird sie in einen Bereich kommen, der weitgehend staubfrei ist. Die interstellare Materie in diesem Gebiet besteht aus zwei Komponenten, zum einen aus neutralem Wasserstoff mit einer Dichte von 0,05 bis 0,07 Atomen/cm³, zum anderen aus einem sehr dünnen und heißen Plasma mit einer Dichte von 0,001 bis 0,005 Atomen/cm³ und einer Temperatur von 1,4 Millionen Kelvin.
Jetzt zur Frage selber: Die von Adolf oben gezeigte und als *Schutzschild* benannte *Heliosphäre* (Blase) unserer Sonne besteht aus (von innen nach aussen): Termination Shock (die innere Grenze des Sonnensystems, Heliosheath und Heliopause (die äussere Grenze des Sonnensystems).
In der gesamten Fachliteratur wird genauestens beschrieben wie diese *Heliosphäre* funktioniert. Kurz gesagt: Die *Heliosphäre* schützt unser Sonnensystem vor *Entleerung*. Ohne diesen Schutz würde der Partikelstrom aus elektrisch geladenen Teilchen (Plasma, das aus Protonen, Elektronen und Alphateilchen besteht) mit 350–900 km/s in die Unendlichkeiten des Alls entfliehen. Dies Plasma entsteht in den äußeren Schichten der Sonne. Diese Blase bleibt aber nicht stabil, sondern kann sich durch den Innendruck oder durch den Widerstand von aussen verändern.
Das bedeutet, wenn jetzt unser Sonnensystem auf eine wirklich dichte Molekühlwolke stossen würde (vorläufig aber nicht!), dann könnte die *Heliosphäre* soweit zurückgedrängt werden, dass ihre innere Grenze (Termination Shock) z.B. bereits im Bereich des Orbits vom Mars liegt. Die äusseren Planeten würden dann den Unbehaglichkeiten des agressiven Alls ausgesetzt. Diese Dichteverschiebung, die die Stabilität aufhebt, nennt man *Bow Shock*.
Bild:
www.nasa.gov Hubble Space Telescope / February 1995
*Bow Shock* mit von ø ~ 0,5 Lj , hervorgerufen durch den Sonnenwind des Sterns Orionis bei der Kollision mit der vergleichsweise dichten interstellaren Materie des Orionnebels.
Jerry